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Axisymmetric high Reynolds number flows in tubes of slowly varying radius are 
shown to be governed to a first approximation and in suitable co-ordinates by a 
partial differential equation which, in a particular case, allows solutions independent 
of the streamwise co-ordinate. The solutions of the resulting ordinary differential 
equation give flows with inflexion points in the velocity profiles and reversed flow in 
some cases. 

1. Introduction 
In  this paper we find a set of first approximations to axisymmetric solutions for 

incompressible flow in a tube of radius H ( Z ) ,  where 2 = ez. Here z is the dimensionless 
co-ordinate in the axial direction and e is a small parameter. The flow is mainly in the 
z direction so it is appropriate to introduce a Reynolds number R = M/vL ,  where M 
is the volumet,ric flow rate in that direction. The length L is the tube radius a t  some 
fixed station and v is the kinematic viscosity. 

I n  the case where R = O(1) as E -+ 0 the flow is a small perturbation of Poiseuille 
flow and has been treated by Blasius (1910)) Manton (1971) and Tanner & Linnet 
(1965). The interest in the present work is to bring into play the nonlinear terms in 
the equations at the$& approximation, and to this end we set RE = A, where h is 
a constant. As pointed out by Smith (1976)) the first approximation to  the flow then 
satisfies the boundary-layer equations, although the balance here is obtained in a 
manner quite different from that in conventional boundary-layer theory. 

On using a Stokes stream function of the form $ = Fo(r, 2) + O(e2), where 71 = r / H ( Z ) ,  
we can find the partial differential equation for Fo(v, 2). The observation is then made 
that this equation allows solutions independent of 2 provided that H ( 2 )  takes the 
special form H ( 2 )  = exp (az ) ,  where a is constant, which we choose to be positive. 

The nonlinear ordinary differential equation for F, is displayed in (2.22) and that 
for the z velocity G = r-ldF,/dy is shown in (2.26). The appropriate boundary-value 
problem for this velocity function has many interesting solutions, including velocity 
profiles with points of inflexion and reversed flow, and some with multiple maxima and 
minima. I n  this paper we have calculated numerically a selection of solutions which 
appear most likely to be attained experimentally and which merge smoothly with 
Poiseuille flow as h --f 0. Some other solutions are also discussed. 

It will appear that our expansion is valid for eH < 1 and this is certainly true for 
2 c kllogel, where k is a positive constant. The expansion, though formally valid for 
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Z + - 03, is of doubtful value for large negative values of 2 because the local Reynolds 
number becomes very large and presumably the flow is unstable in many cases. It 
seems possible, however, that if we attach a tube of constant radius fairly smoothly 
to an exponential tube the flow described by our theory could be attained gradually 
as 2 increases from negative valuea. Consideration of the transition from Poiseuille 
flow to our flows would be a complicated problem and will not be considered here. 

The theory given here bears a certain resemblance to the theory of high Reynolds 
number flow in wedges of small angle. Specifically, if we consider channel walls of the 
form y = _ + E X  with RE = A, where R is a Reynolds number, then the first approxi- 
mation F to the stream function may be shown to satisfy the ordinary differential 
equation 

F"' + 2AP'F" = 0.  

Here F = F(7)  and 7 = y/ex. This, of course, is the first approximation in the limit 
E -+ 0 with h fixed to the exact Jeffery Hamel solutions for flow in a wedge with arbi- 
trary E and R. 

However, in the case of a cone there is no simple exact solution, therefore the flows 
described here are a first approximation to a more complicated situation, A major 
difference is that as x is varied the local Reynolds number and local divergence angle 
remain constant in the wedge, but as z is varied in the tube the local values of R and 
the divergence angle change. This is the basic reason for the restriction eH 4 1 re- 
quired in our theory. This point will be discussed more fully later. 

In  view of Fraenkel's (1962,1963) theory of flow in channels of small wall curvature, 
using the Jeffery-Hamel solutions as a first approximation, it is natural to ask whether 
a similar approach would work for tubes which behave locally like tubes of radius 
exp (a2). This question is currently under investigation and results will be reported 
at a later date. 

Another question of interest is that of the stability of the flows obtained. We know 
that Poiseuille flow is stable to infinitesimal disturbances (see, for example, Davey & 
Nguyen 1971). As y = ha increases in (2.26) the flows change from Poiseuille flow to 
flows with points of inflexion in the velocity profile. It seems likely that these flows will 
become unstable a t  some value of y. The investigation of this would require compu- 
tation of the stability problem for high Reynolds numbers, which is not an easy task. 

(1.1) 

2. Expansion for flow in tubes of slowly varying radius 

function such that 

are the fluid velocities in the radial and axial directions respectively. We wish to 
consider flow in tubes with rigid boundaries given by 

r* = g*(z*). (2 .2)  

Let (r*, 0, z*)  be cylindrical polar co-ordinates and let $*(r*, z*)  be a Stokes stream 

U* = -r*--1 a$*/az*, V* = r*--1 a$*/ar*. (2 .1)  

We define the constant volumetric flow rate M to be 

r2n Po* 
v*r*dr*dO = 2n[$*(g*, z*) - y?*(O, z*)J M = J o  J; 
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Taking $* to be zero on the axis r* = 0 this requires 

$*= M / 2 n  on r* = g * .  (2.4) 

r = r*/L, z = z*/L, II. = $*/M, (2.5) 

r = &(z),  (2.6) 

The dimensionless co-ordinates and stream function are defined by 

where L is the tube radius a t  z = 0. The radius of the tube is now given by 

where &(z) = g*(z*)/L and we note that Q(0)  = 1. The equation for $ is 

where 02 = a2/ar2 + a2/azz (2.8) 

R = M/vL,  (2.9) 

and R is the Reynolds number 

v being the kinematic viscosity. 
We prefer the above more explicit form to the version quoted by, for example, 

Goldstein (1943, p. 115), and it should be noted that our D2 is different from Goldstein’s 
and that our 4 is of opposite sign. The boundary conditions are 

(2.10) 1 (i) @ = O(r2) as r + 0, 

(ii) a$/& = 0 when r = &(z), 

(iii) @ = l/27r when r = &(z),  

where from (2.1) we see that (i) ensures that the fluid velocity is finite a t  the centre of 
the tube while (ii) and (iii) ensure that it is zero on the tube wall r = &(z).  Further 
conditions are needed for a complete specification of the problem. 

We now specialize to the particular case in which the walls are slowly varying in 
the z direction, i.e. we assume that the tube walls are given by 

r = H ( Z ) ,  (2.11) 

1c. = $@, Z), (2.12) 

where Z = EZ and E is small. Assuming then a corresponding Stokes stream function 

we see that since a/& in (2.7) becomes e8,Ia.Z the dominant terms on the left-hand side 
are of order E while those on the right-hand side are 1/R times terms of order one. 
We are thus led to consider flows in which 

ER = A. (2.13) 

The dominant terms on each side are then of order E ,  while the next-order terms occur- 
ring in the equation for $ are of order e3. 

Since the boundary conditions do not contain E an expansion 

(2.14) 
11-2 
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is appropriate. It is also useful to introduce the co-ordinate 
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7 = r /H(Z) .  (2.15) 

Then 7 = 1 is the wall of the tube. We set 

$ = Fo(7,Z) + ~ ' F z ( 7 , z )  + v - 9  (2.16) 

and using (2.13) and the transformations 

(2.17) 

in the stream-function equation (2.7), we find that the partial differential equation 
for Fn is 

where (2.19) 

We now make the crucial observation that if H ' ( 2 )  = uH(Z)  then (2.18) allows a 
solution which is independent of 2, i.e. a function of 7 only. Thus setting 

H ( 2 )  = exp (aZ), (2.20) 

where a is constant, which we choose to be positive, and setting 

we find that the ordinary differential equation for F, is 

(2.22) 

The boundary conditions corresponding to (2.10) are 

F, = 0(r2) as 7 -+ 0, Fh( I )  = 0, F,(l) = 1/2n. (2.23) 

Equation (2.22) is singular at 7 = 0 and allows a series solution starting with 

(a, + a,ya+ a474+ . . .) + b0(y2l0g 'I + . . .), (2.24) 

where the constants a,, a2, a4 and b, are arbitrary as far as the differential equation k 
concerned. From (2.23) we require a, = 0 and b, = 0, the latter ensuring that F,(q) 
is regular at 7 = 0. 

I n  terms of the velocity function G(7) defined as 

G(7) = 7 - W o / d 7  
the differential equation becomes 

(2.25) 

G" + 7-l G" - 7-2 G' + 4yGG' = 0, (2.26) 
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where y = ha. The boundary conditions may be expressed as 

G(7) regular a t  7 = 0, 

/017G(q)d7 = 1/27r, G(1) = 0. 
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(2.27) 

In $ 3  we discuss some solutions of this nonlinear boundary-value problem. It turns 
out that there are some interesting solutions with points of inflexion and reversed 
flow, and also some with several maxima and minima. It should perhaps be pointed 
out thab y > 0 represents flow with a net volumetric flow rate which is positive, i.e. 
flow in a divergent tube, while y < 0 represents net flow into a convergent tube. The 
case y = 0 can be interpreted as R = 0, with solution G = 0,  or as a = 0,  R arbitrary, 
with a Poiseuille-flow solution. 

We now consider briefly the solution for the next perturbation function F2(7, 2). 
We find that F2(y, 2) may be expressed in the form 

(2.28) 

Substituting (2.21) with (2.28) into (2.7) and equating coefficients of e2 yields a fourth- 
order linear ordinary differential equation for f2 containing only y as a parameter. 
This may in principle be solved subject to the boundary conditions 

(2.29) 

It seems that for validity of the expansion in an asymptotic sense as e + 0 we need 

eexp (a2)  < 1.  (2.30) 

This is satisfied for any negative value of 2 and for positive values of 2 such that 
2 < llogel, i.e. such that z < e-lllogel. 

For large negative values of 2, e.g. 2 N - cn, the error in using only the first term 
appears to be transcendentally small. But the local Reynolds number 

R, = M / v L H  = R exp ( - a 2 )  (2.31) 

is then transcendentally large, and the flow may be unstable. 
For large positive values of 2 (formally 2 >> [log € 1 )  the expansion fails. This is to 

be expected because 
d H / d z  = aeexp (a2)  (2.32) 

is then no longer small, i.e. the local divergence angle of the walls is no longer small. 
The product of the local Reynolds number and the local divergence angle remains 
constant, but the basis for the approximation is destroyed. 

The first approximation appears to have error of order e2 if - Kl < 2 < K2, where 
Kl and K, are positive constants, i.e. provided that - KJe c z < K,/e.  This would 
probably be a useful range for application of the theory with reasonable values of e 
and with Kl and K ,  chosen to be numerically of order 1. 
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3. Solutions for G(q) 

equation (2.26) and boundary conditions (2.27). One integration of (2.26) yields 
We now consider sohtions for the velocity function G(y), which must satisfy the 

G" + 7-lG' + 2yG2 = C, (3.1) 

where C is a constant. The first of the boundary conditions (2.27) excludes the possi- 
bility of a term of order log 7 in the expansion of G as 7 + 0,  which then has the form 

G N zag+ 4U4y2 (7 + O ) ,  (3.2) 

where u2 and u4 are the coefficients in (2.24). Also C = 8(2a4+ yui). Negative and 
positive values of the parameter y correspond to flow in converging and diverging 
tubes respectively while the particular case y = 0 corresponds to Poiseuille flow in a 
straight-walled tube. 

Solutions for G were computed for a range of values of y using two alternative 
numerical schemes. In  the first the system 

B"+?j- lB'+d,@ = a,, B(0)  = 1, B'(0) = 0, (3.3) 

for a(7) was solved using a second-order-accurate finite-difference scheme in which 
d, and d, are given specified values and the solution then computed forwards from 
?j = 0 until B = 0 at ?j = c1 (say). Then c2 is defined by 

and the required solution of (2.26) and (2.27) is 

G(7)  = (cf/2rc2) B(?j), 7 = C; '7, 7 = rc,dl. (3.4) 

In  this way solutions are obtained by just one forward integration from r ]  = 0 and 
the extension to solutions with more than one zero of G is straightforward. The dis- 
advantage of this method is that the value of y cannot be prescribed a t  the outset, 
being determined by (3.4). More accurate solutions were obtained for prescribed y 
by applying a fourth-order Runge-Kutta scheme to the system (2.26) and (2.27). 
The starting values a2 and a4 were set and adjusted after forward integration to 
7 = 1 using linear interpolation until the second and third conditions in (2.27) were 
satisfied. As a check on accuracy the series solution was found up to 78 and used in- 
stead of the first Runge-Kutta step. As in the first scheme, integration from a finite 
value of G automatically excludes the possibility of logarithmic behaviour at  7 = 0. 

Figure 1 shows the scaled non-dimensional skin friction - G'( 1)  a t  the wall as a 
function of y .  There are multiple solutions for both positive and negative values of y, 
although it seems likely that the solutions on branch 1, which we believe to be accurate 
to within 0.1 yo and which are shown in detail in figure 1 (b ) ,  are the only ones which 
are physically realistic. Velocity profiles associated with this branch are shown in 
figure 2. We see that as y -+ --03 the profile is virtually uniform across the tube; 
the predominant balance in (3.1) is 

G N (-0/21yl)* (-7 B 1) (3.5) 

C = - 2 ) y J ~ - ~ ,  G N 7~-1. (3.6) 

and the flux condition requires that away from the wall 
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FIGURE 1. Some branches of the solution of (2.26) and (2.27). 
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FIGURE 2. Velocity profiles on branch 1 for various values of y. 
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A boundary layer must adjust the velocity to zero at the wall g = 1. We therefore 
write g = 1 - (n / /y I i )g ,  and consider the region where gl = O(1). Here the solution 
which matches with (3.6) as gl -+ co is 

G = n-1(3 tanh2 (al + d )  - 2) + O( 1yl-i) ( - y a 1) (3.7) 

(3.8) 

The solution with d > 0 represents a monotonic increase in velocity from zero at  the 
wall to the mainstream value (3.6) and is the asymptotic solution on branch 1 as 
y + - 00. The solution to this order is essentially that obtained in the boundary 
layer between converging plane walls. The solution with d < 0 contains a reverse 
flow region in the boundary layer a t  the wall and corresponds to a different branch 
of the solution, which is discussed below. 

On branch 1 the velocity a t  the centre of the tube increases as y is increased through 
negative values and at y = 0 we have the parabolic Poiseuille profile 

and the wall condition a t  gl = 0 is also satisfied provided that 

d = 5 tanh-l ($)a N & 1.146. 

G = 2n-l(l-v'), - G ( l )  = 4n-1. (3.9) 

A further increase in y results in the development of an inflexion point in the profile 
at y N 4.9, g 21 0.5 and eventually separation occurs at the tube wall (i.e. G'(1) = 0)  
when y = yo N 6.944. 

Our numerical results suggested that the solution for G as a function of y is singular 
a t  the point of separation and this is confirmed analytically as follows. We suppose 
that ?/n (n = 0 ,1 ,2 ,  . . .) is a value of y at which G'( 1) = 0 and expand G in the form 

G =  G ~ ( ~ ) + ( Y ~ - Y ) ' G , ( ~ ) + ( Y ~ - Y ) G ~ ( ~ I ) + . . .  (3.10) 

as y -+ yn . Substitution into (3.1) shows that the functions Go, G, and G, must satisfy 

(3.11) 
G:+'G;+2ynG,2 = Co, Go(l) = 0, /:gGodg = 2n, 1 

7 

(3.12) 

so' 1 

7 
G ~ + - G ~ + 4 y n G o G ,  = C,+2G~-2ynG~,  G,(l)  = 0, gG,dg = 0 (3.13) 

in addition to the requirements of regularity a t  g = 0. Since GA(1) = 0 the required 
solution for G, may be found as 

G, = 4G,+BgG;L (3.14) 

where A is an arbitrary constant. However, a consistent solution for G, may be found 
only if 

I 6 j o 1 m ? l  
A2 = (3.15) 

7 i ~ ~ ~ 2 ( 6 ~ ~ + 7 ~ ~ ) d 7 )  

a result obtained by multiplication of (3.12) by gG, and (3.13) by gG,, subtraction 
and integration from g = 0 to g = 1 .  Our numerical results suggest that this expres- 
sion for A2 is always positive, both integrals involved being positive for n = 0 (branch 
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1) .  Thus having found Go (in theory) from (3.11), A is determined and the solution 
for G, complete. The reason for the singularity at yn is now evident: a regular expansion 
about this point (i.e. with G, = 0 )  would imply that the solution (3.14) is one com- 
ponent of the solution for G,. The full solution for G, would then contain the arbitrary 
constants A and C,, one further constant, B, say, and the particular integral corres- 
ponding to the term 2Gi on the right-hand side. In  general the three constants A ,  B 
and C, would be chosen to satisfy the two conditions in (3.13) and the requirement of 
regularity a t  7 = 0. However with GA(1) = 0 the value of A has no influence upon 
these conditions and the remaining two constants B and C, cannot be chosen to 
satisfy the three boundary conditions. Introduction of the term of order (yn- y ) i  in 
(3.10) provides the extra term -2ynG: on the right-hand side of (3.13) which allows 
this situation to be avoided. 

Beyond the point of separation a t  yo, the branch 1 profiles contain reverse flow 
regions at the wall which increase in size and strength as y + 0 + . Here the solution 
of (3.1) has the form 

(3.16) 

where d must be found as a solution of the nonlinear eigenvalue problem 

G = y-ld(7) + . . . (y  -+ 0 ) ,  

(3.17) 

where c is an arbitrary constant to be determined. 
We envisage that there will be a doubly infinite set of solutions of (3.17), d = d$ 

(m = 1,2 ,  . . .) say (where represents solutions with d(0) 2 0) ,  and that the solution 
d ,  will have m zeros in the region 0 < 7 < 1.  The eigenfunction d,+ describes both the 
solution on branch 1 as y + 0 + (see figure 2b)  and the solution on branch 2 (see 
figure 1 a )  as y + 0 - . The latter has a region of reverse flow a t  the centre of the tube 
and forward flow adjacent to the walls (see figure 3). On branch 3 (also shown in 
figure l a )  the solution starts in the form (3.16) with d = 8, (reverse flow a t  the 
centre) a t  the upper extreme, separation occurs at the parabolic vertex a t  

y = y1 N 50.4, 

below the y axis an additional region of reverse flow appears a t  the wall, and as 
y -+ O +  the solution has the form (3.16) with d = 6; . 

I n  the region y < 0 the branch 1 solution develops into the profile (3.6), (3.7) as 
y -+ -m, while the branch which takes the form (3.16) with d = 0, as y + 0-  
develops into the same uniform profile (3.6) as y -+ - co but with the minus sign for 
d in (3.8), representing a reverse flow region in the boundary layer at the wall. The 
remaining branches in y < 0 contain increasing numbers of reverse flow regions and 
it seems likely that as y 4 - co these will be compressed into shear layers of thickness 
O(lyl-a), centred a t  stations 7 = qo in the fluid, where the velocity profile is 

G N r 1 ( 3  tanh2 ( d l  yJi(7 - v0)  - 2)). (3.18) 

These layers will separate regions of forward flow where Q - T-1. 

We expect that  all the branches with reverse flow are unstable and although we 
have not yet carried out a detailed stability analysis, we note that the point y = yo 
on branch 1 is a point of marginal stability to disturbances which are simply functions 
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FIGURE 3. A velocity profile on branch 2. 

of 7. This is because a solution of the form (3.14) may be regarded as the leading eigen- 
function of the disturbance with zero growth rate. It seems probable that only the 
solutions on branch 1 above the vertex are stable to such disturbances although the 
appearance of an inflexion point in t.he velocity profile suggests that more general 
disturbances may lead to instability at a lower value of y .  
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